
Simple Step® ActiveX Manual
Version: 2.0.1

Simple Step LLC
12 West Owassa Turnpike

Newton, New Jersey, 07860
Phone: (973) 948-2938

Fax: (973) 948-0182

http://www.simplestep.com
email: info@simplestep.com

http://www.simplestep.com/

Contents

Simple Step ActiveX Installation Notes.. 4

Microsoft Visual Basic version 6.0: .. 4

Microsoft C++.NET 2003: .. 4

Borland C++ Builder 6.0:..5

National Instruments LabVIEW 6.0:..5

Simple Step ActiveX Methods and Properties ..7

Properties ..7

baudrate (LONG . R/W) ...7

port (SHORT . R/W) .. 8

comm_activated (SHORT - RO) .. 8

comm_error (LONG - R/W) .. 8

txd_time (LONG - R/W).. 8

wait_timer (LONG -. R/W) ... 8

board_count (SHORT - RO) ... 8

wait_port_result (SHORT - RO) ... 8

hex_numbers (SHORT - R/W) ... 9

Windows Initialization and Release of the Serial Port Control .. 10

VB: SHORT InitializeCommPort(void) or C++: void InitializeCommPortC(SHORT *pVal) 10

C++ Example ... 10

VB Example: .. 11

void ReleaseCommPort(void)... 11

Serial Port Methods .. 12

void ChangeBaudrate(LONG new_baudrate) .. 12

BYTE RawCharacterIn(void) .. 12

SHORT RawCharacterOut(BYTE data) ... 12

SHORT CheckReadBuffer(void) ... 12

void ClearReadBuffer(void) ... 12

SHORT WaitPort(LONG timer) ... 12

VB: BSTR MessageIn(void) or C++: void MessageInC(CHAR* message)..................................... 13

VB: void MessageOut(BSTR message) or C++: void MessageOutC(CHAR* message) 13

VB: BSTR SendCommand(BSTR message) or C++: void SendCommandC(CHAR* message,
CHAR* response)... 13

Board Information and Networking Methods.. 14

void GetNetworkStructure(SHORT *data)... 14

VB: BSTR GetAxisInformation(BYTE axis BYTE address) or C++: void
GetAxisInformationC(BYTE axis, BYTE address, CHAR* result) .. 14

SHORT *SetCurrentLevel BYTE axis, BYTE address BYTE running, BYTE idle, BYTE decay) .. 15

BYTE CheckMotorStatus(BYTE axis, BYTE address) .. 16

Initialization and Motor Movement Methods... 17

SHORT MoveMotorAboslute(BYTE axis, BYTE address, LONG begin_velocity, LONG
top_velocity, BYTE slope, LONG position)... 17

SHORT MoveMotorRelative(BYTE axis, BYTE address, LONG begin_velocity, LONG
top_velocity, BYTE slope, BYTE home_active, BYTE limit_active, LONG position) 17

VB: SHORT InitializeMotor(BYTE axis, BYTE address, BYTE direction, BYTE move, BSTR
options) or C++: SHORT InitializeMotorC(BYTE axis, BYTE address, BYTE direction, BYTE
move, CHAR* options) .. 18

Motor Movement Parameter Methods (Write) .. 20

SHORT SetMotorPosition(BYTE axis, BYTE address, LONG position)... 20

SHORT SetTopVelocity(BYTE axis, BYTE address, LONG speed).. 20

SHORT SetBeginVelocity(BYTE axis, BYTE address, LONG speed)... 20

SHORT SetSlope(BYTE axis, BYTE address, BYTE slope) .. 20

SHORT SetPrescale(BYTE axis, BYTE address, BYTE prescale) ... 20

SHORT SetSteppingMode(BYTE axis, BYTE address, BYTE mode)... 20

Motor Movement Parameter Methods (Read) ..22

LONG ReadTopVelocity(BYTE axis, BYTE address)..22

LONG ReadBeginVelocity(BYTE axis, BYTE address) ..22

BYTE ReadSlope(BYTE axis, BYTE address)...22

LONG ReadMotorPosition(BYTE axis, BYTE address) ..22

IEEPROM Methods...23

VB: BSTR IEEPROM_Read(BYTE axis, BYTE address, SHORT ieeprom_address) or C++: void
IEEPROM_ReadC(BYTE axis, BYTE address, SHORT address, CHAR* ieeprom_data)23

SHORT IEEPROM_Erase(BYTE axis, BYTE address) ...23

VB: SHORT IEEPROM_Write(BYTE axis, BYTE address, BSTR ieeprom_data, SHORT
ieeprom_address) or C++: SHORT IEEPROM_WriteC(BYTE axis, BYTE address, CHAR*
ieeprom_data, SHORT ieeprom_address)..23

Simple Step ActiveX Installation Notes

 Install the Simple Step ActiveX by clicking on the setup.exe file. This will install
the ActiveX control into the COM+ listing for your system. The ActiveX DLL with the
associated files will be installed to the "\Program Files\Simple Step LLC\ActiveX"
subdirectory. In that subdirectory there will also be two (2) more subdirectories that
are shown below. The projects where written to test an SSXYMicro board at address 0.
Please make changes to them before attempting to run these projects for your
particular board.

 Borland C++ Builder 6.0 Example: This subdirectory has a project in it for
Borland C++ Builder. It tests all the methods of the ActiveX control.

 VB 6.0 Example: This subdirectory has a VB project that was written to test all
the variables and methods of the ActiveX control.

 VC++.NET 2003 Example: This subdirectory has a VC++ project that was
written to test all the variables and methods of the ActiveX control.

 NI LabVIEW 6.0 Example: This subdirectory has a VI project that was written
to test some the variables and methods of the ActiveX control.

 To use the ActiveX control, the user will need to start the respective compiler
and have it recognize the ActiveX control in the toolbox as shown before any attempt
is made to run the programs.

Microsoft Visual Basic version 6.0:
Start VB as normal. Make sure that there are no projects/solutions loaded. Point your
mouse in the "Toolbox" area and "Right Click" the mouse button. A dialog will appear.
Move the mouse so that the "Components.." Is highlighted and Left click the mouse for
that selection. A components dialog will appear. Scroll down the list until you see the
listing for "Simple Step ActiveX x.x Type Library" (where x.x is the version number) is
shown. Left click the check box to the left of the listing and click the "Ok" button. You
should now see the Simple Step ICON in the toolbox area.

Microsoft C++.NET 2003:
Start VC++ as normal. Make sure that no projects/solutions are loaded. Point your
mouse in the "Toolbox" area and "Right Click" the mouse button. A dialog will appear.
Move the mouse so that the "Add/Remove Items..." is highlighted and Left click the
mouse button. A new dialog will appear labeled "Customized Toolbox". Left click on the
"COM Components" tab at the top of the dialog. Scroll down until you see in the listing
"SimpleStepComm Class". Left click the check box to the left of the listing and click the
"Ok" button. You should now see the Simple Step ICON in the toolbox area.

Borland C++ Builder 6.0:
Start C++ Builder 6 as normal. Make sure that no projects/solutions are loaded. Click
on the "Component" from the menu. Highlight the "Import ActiveX Control... " from the
menu and Left click on the menu selection. A new dialog will appear that will show you
all the currently installed ActiveX controls available. Scroll down until you see the
listing for the "Simple Step ActiveX x.x Type Library" (where x.x is the version number)
and select it with the left button on the mouse. Click on the .Install. button. Another
dialog will appear that has the header of "Install". Click on the "into new package" tab.
Click on the "Browse" button and find the "\Program Files\Simple Step LLC\ActiveX"
subdirectory that the DLL was installed. It will ask for a name for the new package file.
Type in "SimpleStep" and click the "OK" button. Click the "OK" button again and another
dialog will appear that says "Package - SimpleStep" at the top of the dialog with
another dialog appearing "Confirm" with the message appearing saying "Package
SimpleStep.bpl will be built then installed, Continue?". Click the "Yes" button and then
a "Compiling" dialog box will appear. Once complete, a new dialog will appear saying
that the package has been installed and the following new component has been
registered. Click the "Ok" button and the message will disappear leaving the
"Compiling" dialog. Click on the "close" button in the upper right corner of the dialog to
close it. A new dialog will appear asking if you want to save the project "SimpleStep".
Click the "Yes" button. Now with all the dialogs closed. At the top of the menu bar you
will see a tab labeled "ActiveX". Click on that tab and you should see the Simple Step
ICON on the menu bar. You are now ready to create your project and add the control to
any projects.

National Instruments LabVIEW 6.0:
Start LabVIEW as normal. When the LabVIEW menu displays, click on the .New VI.
button. Make sure that the "Panel" is selected and the "Controls" toolbox is displayed.
The next step is to click on the "ActiveX" Button in the lower right corner of the
toolbox. This will display another control toolbox dialog. Click on the "Container"
button with the Left mouse button and "drag" it into the "Panel". Make sure the cursor
is set for pointer and click on the new "Container" that you just dragged into the Panel
area. Once selected, right click on the "Container" object and select on the menu that
will appear "Insert ActiveX Object". An "Select ActiveX object" dialog will appear. Scroll
down until you see the SimpleStepComm Class" and select it with the left mouse
button and click the OK button. You are now ready to use the ActiveX control. Click to
open the diagram window and then click the toolbox for "Communication". This will
change the toolbox to the "Communication" toolbox. Select the "ActiveX" button in that
toolbox. This will switch the toolbox to "ActiveX". Click on the .Invoke Node. button and
drag that into the browser. Select the "Automation" icon in the Diagram and right click
the mouse. Right click the mouse and select the "Select ActiveX Class" and choose
"SimpleStepSerialCommXLib.ISimpleStepComm" from the menu. At this point the icon
in the diagram will now have in the upper section of the icon "ISimpleStepComm". Right
click the mouse again and choose "methods" from the menu. A list of methods will be

displayed. You can go to the example that was installed onto the hard drive to see a
few of the basic methods being used from the Simple Step ActiveX control. Choose the
method called "InitializeCommPortC". The method icon will change so now there are 3
levels. The first level (upper left corner of the icon) must now be wired to the green
boxed icon that says "SimpleStepSerialCommActiveXLib.ISimpleStepComm". This will
make a connection to the ActiveX control. The second level of the method does not
have to be wired. The third level of the ActiveX method must have a numeric constant
of 0 place and wired to the left of the "pVal" level. You should then go to the "Panel"
and add a numeric "Digital Indicator" and drag that onto the "panel" and change the
name "Numeric" to "board count". Go to the diagram and change the "Representation" to
I16 type number. Wire the "board count" icon to the right side of the "pVal" level of the
ActiveX. When you run the program you should have the program call the Simple Step
ActiveX method "InitializeCommPortC" which will initialize the communication port to
the default values of the variables "port", "txd_delay", "wait_timer" and .baudrate.
properties which can be initialized via the "Communications, ActiveX, Property Node"
icon being dragged into the "Diagram" window and setting it via the "Select ActiveX
Class" then select the "SimpleStepSerialCommActiveXLib.ISimpleStepComm". Click the
right button again on the icon you just created and tell to what property you want it to
change or read. Also make sure that the "ReleaseCommPort" method is performed last
after the you have completed or else the communication port WILL be locked out to
that thread.

Simple Step ActiveX Methods and Properties

 The Simple Step ActiveX was designed to help our customers interface custom
controls without having to get into the .hooks. associated with Microsoft Windows
serial communications pathways. We hope that this ActiveX will allow you to control
the Simple Step Motion Controller boards in a much simpler way then designing your
own serial communications .hooks. to Microsoft Windows. If you have any questions,
comments or suggestions, please e-mail us at support@simplestep.com.

We currently have broken down the Simple Step ActiveX control into 8 groups.

1. Variables
2. Windows Initialization and Release of the Serial Port Control
3. Serial Port Methods
4. Board Information and Networking Methods
5. Motor Initialization and Movement Methods
6. Motor Movement Parameters (Setting)
7. Motor Movement Parameters (Reading)
8. IEEPROM Programming Methods

Properties

 The first group is the variables themselves. Most of these variables need to be
set before any methods are called. Most of the variables are used when initializing the
Serial Communications port under Microsoft Windows.

baudrate (LONG . R/W) - This sets the serial communications port baudrate. This
variable MUST be set before calling the InitializeCommPort method. The value should
not be changed AFTER the InitializeCommPort method is called. Default: 57600. Valid
baudrates are as follows:

 9600
 19200
 38400
 57600
 115200

port (SHORT . R/W) - This sets the Serial Communications Port to use. This variable
MUST be set before calling the InitializeCommPort method. The value should not be
changed AFTER the InitializeCommPort method is called. Default: 0. Valid values are
as follows:

 0 = Comm Port 1
 1 = Comm Port 2
 2 = Comm Port 3
 3 = Comm Port 4
 4 = Comm Port 5
 5 = Comm Port 6
 6 = Comm Port 7
 7 = Comm Port 8

comm_activated (SHORT - RO) . This variable will be set to a TRUE (1) once the
InitializeCommPort method is called and successfully opened. Default: 0

 0 = FALSE . Serial Communications Port is not active
 1 = TRUE . Serial Communications Port is active and ready

comm_error (LONG - R/W) . This variable counts the serial communication errors
that are found while transmitting and receiving. Default: 0

txd_time (LONG - R/W) . This variable is used when transmission to the Serial port
occurs. The timer is a millisecond timer and every character transfer to the Serial Port
will be delayed by this time value. Default: 0

wait_timer (LONG -. R/W) . This variable is used when the WaitPort and
SendCommand methods are called. The timer is in milliseconds. The PC speed,
currently active programs and the type of Microsoft Windows will determine the
overall value that should be used. Most times the Microsoft Windows switching speed
between tasks will help in this matter. Example: Windows 95 and 98 running on a
133MHz PII will need a value of 180 and a Windows XP running on a 2GHz P4 can use as
little as 40. Default: 100

board_count (SHORT - RO) . This variable is set after the InitializeCommPort
method is called. It has the total count of boards that are on the network when the
InitializeCommPort method is performed and the Simple Step network is initialized.
Default: 0

wait_port_result (SHORT - RO) . This variable is set after each call to the WaitPort
method is called.

 0 = FALSE . No characters in the receive buffer (2 or less).
 1 = TRUE . Receive buffer has 3 or more characters in the buffer.

hex_numbers (SHORT - R/W) - This variable should be set before the
InitializeCommPort method is called. If TRUE (1), then all numeric entries and
responses will be in hexadecimal format. This saves transfer times and allows the axis
to convert numbers to and from the Host in a faster way. If FALSE (0), then All numeric
entries and responses are in decimal format. The only methods that do not perform
numeric transfers are the following commands so care should be taken when putting
the Network in hexadecimal format and using these commands directly. Default:
FALSE

 SendCommand method
 MessageOut method
 MessageIn method

Windows Initialization and Release of the Serial Port Control

 The second group in the Simple Step ActiveX control is the initialization and
release of the Microsoft Windows Serial Port. The InitializeCommPort and
ReleaseCommPort methods are needed before any of the other methods are used and
before closing the application. Several variables need to be initialized before calling the
InitializeCommPort method and no variables need to be set for the ReleaseCommPort
method.

VB: SHORT InitializeCommPort(void) or C++: void
InitializeCommPortC(SHORT *pVal) : This method initializes the Microsoft
Windows serial communications port that is specified before calling this method. The
routine will then clear the receive buffer for the communications port and then scan
the serial port for boards on the serial network. When each board is found the method
will then collect each axis parameters (motor type, board type, current E, B and S
value along with options. It will then set variables to let the calling routine know what
is available and if the method was successful. It will return with the amount of boards
it has found on the network. Variables that need to be set before calling this method
are as follows:

Input Variables that need to be set:

 port (SHORT)
 baudrate (LONG)
 wait_timer (LONG)
 txd_time (LONG)
 hex_numbers(SHORT)

Output variables that will be changed:

 comm_activated (SHORT)
 board_count (SHORT)
 comm_error (LONG)

C++ Example:
#include .SimpleStep.h.

void __fastcall TForm1::FormActivate(TObject *Sender)
{
BYTE buffer[100];
NETWORK boards;
BYTE results[500];
SHORT play;
SHORT boardcount;

SimpleStepComm1->port = 0;
SimpleStepComm1->skip_network_check = FALSE;
SimpleStepComm1->wait_timer = 80;
SimpleStepComm1->baudrate = 57600;
SimpleStepComm1->txd_timer = 0;

boardcount = SimpleStepComm1->InitializeCommPort();

if ((SimpleStepComm1->comm_activated == TRUE) &&

 (SimpleStepComm1->board_count > 0))
 {
 SimpleStepComm1->GetNetworkStructure(&boards.count);
 SimpleStepComm1->GetAxisInformation(X_MOTOR, 0, results);
 }
SimpleStepComm1->ReleaseCommPort();

}

VB Example: (The user must include the .SimpleStepVB.h. file contents into the
(declarations) area before running.

Public Sub SetupControllers()

Dim response As String
Dim timeout As Long
Dim boardcount As Long

timeout = 80 ' Set RxD timeout to 80ms

SimpleStepComm1.txd_timer = 0 ' Set TxD timer to 0ms
SimpleStepComm1.wait_timer = timeout ' Set RxD timeout to
 ' 80ms(SendCommand ONLY)

SimpleStepComm1.Port = COMM_PORT_1 ' Set port to COMM 1
SimpleStepComm1.baudrate = 57600 ' Set the baudrate to 57600
SimpleStepComm1.skip_network_check = bFALSE ' Tell the initialization
 ' program to search for boards

boardcount = SimpleStepComm1.InitializeCommPort ' Initialize the comm
 ' port and check for boards

If (boardcount > 0) And SimpleStepComm1.comm_activated = bTRUE) Then
 SimpleStepComm1.MessageOut (.X0. + Chr$(13)) ' Get status from X axis
 SimpleStepComm1.WaitPort (timeout) ' Perform RxD timeout
 If (SimpleStepComm1.wait_port_result = bTRUE) Then ' String in buffer??
 response = SimpleStepComm1.MessageIn ' Yes, get response string from axis
 End If

 SimpleStepComm1.MessageOut (.X0m. + Chr$(13)) ' Get motor position from X axis
 SimpleStepComm1.WaitPort (timeout) ' Perform RxD timeout
 If (SimpleStepComm1.wait_port_result = bTRUE) Then ' String in buffer??
 response = SimpleStepComm1.MessageIn ' Yes, get response string from axis
 End If
 response = SimpleStepComm1.SendCommand(.X0e. + Chr$(13))
End If

SimpleStepComm1.ReleaseCommPort

End Sub

void ReleaseCommPort(void) : This method releases the Microsoft Windows serial
communications port the was initialized with the InitializeCommPort method. No
variables will need to be set before the call and none are set after the call of this
method.

Serial Port Methods

 The third group in the Simple Step ActiveX control is the serial port methods.
These methods allow the user to send messages to and receive responses from the
Simple Step board network.

void ChangeBaudrate(LONG new_baudrate) : This method changes the Simple
Step Network baudrate then changes the PC baudrate. All Simple Step Boards on the
serial network are affected. Valid baud rates are as follows:

 9600
 19200
 38400
 57600
 115200

BYTE RawCharacterIn(void) : This method collects and returns one (1) ASCII
character from the serial communications port with no filtering. If no characters are in
the buffer, the routine will wait till one is present before returning. No timeout function
is used so care should be taken when using this method.

SHORT RawCharacterOut(BYTE data) : This method will send one ASCII character
out the serial communications port with no filtering. A TRUE (action has occurred) or
FALSE (action aborted or communication error) will be returned.

SHORT CheckReadBuffer(void) : This method returns how many characters are in
the serial communications receiver buffer.

void ClearReadBuffer(void) : This method clears the serial communications
receiver buffer to zero (0).

SHORT WaitPort(LONG timer) : This method will wait and return when a buffer
size of 2 or greater is found in the serial communications receiver buffer. If no character
(1 or less characters) is found in the receiver buffer and a timeout occurs, the routine
will abort and return to the calling routine. The method will then set the
wait_port_result flag and also return a TRUE/FALSE condition. Valid results for the
return value and the wait_port_result variable are as follows:

 True = found data in receive buffer of 2 or greater then.
 False = timeout occurred with no or less then 2 characters in the receive buffer.

VB: BSTR MessageIn(void) or C++: void MessageInC(CHAR* message): This
method will return a BSTR (String for VB users) that was collected from the serial
communications port receiver buffer up until a 0x0D (13 decimal or CR) was found.

VB: void MessageOut(BSTR message) or C++: void MessageOutC(CHAR*
message): This method will send a BSTR (String for VB users) out the currently
selected serial communications port. It will make sure that the transmission of the
string has been completed (sending out the USART) before returning.

VB: BSTR SendCommand(BSTR message) or C++: void
SendCommandC(CHAR* message, CHAR* response) : This method is a
combination of several methods as listed:

MessageOut(message)
If WaitPort() == TRUE
 MessageIn()
 Return(response)
Else
 Return(0x00)

This method will also check the outgoing messages for the first two (2) locations of
the string (Board Prefix and board address) for 'G'lobal prefix characters. If they are
found, the Waitport and MessageIn routines will be ignored and a NULL pointer will be
returned.

Board Information and Networking Methods

 The forth group in the Simple Step ActiveX methods collect board information.

void GetNetworkStructure(SHORT *data) : This command is not for VB. This
method collects the specified network structure that is formatted as follows:

typedef struct _NETWORK
 {
 SHORT count;
 SHORT sscb[16];
 SHORT ssmicro[16];
 SHORT sscbhc[16];
 SHORT ssxyz[16];
 SHORT ssqe[16];
 } NETWORK;

void main(void)
{
NETWORK boards;

 GetNetworkStructure((SHORT *) &boards.count);
}

 When this method is called, the calling routine should have a short pointer to
the first location of the structure. The returned value is count, which holds the total
amount of boards found on the network, and then each type of board that can be on
the network. Each type of board can be from 0 to 15 which represent the address of the
board. Each of these locations will either be set to TRUE (1) or a FALSE (0) to show
where each board was found. Also, the InitializeCommPort method will return the
boards.count value. Each of the boards are interrogated during the InitializeCommPort
call and all the information for each board is collected and saved in a structure in the
ActiveX.

VB: BSTR GetAxisInformation(BYTE axis BYTE address) or C++: void
GetAxisInformationC(BYTE axis, BYTE address, CHAR* result) : This method
collects the specified axis and address information and converts it into a NULL
terminated string with 0x0D (13 or CR) delimiters per line which is returned Note: The
result character pointer should point to a character array of no less then 250
characters (C++ users). Valid axis assignments are as follows:

 S_MOTOR = 0 (SSCB and SSCB-Gecko Boards)
 U_MOTOR = 1 (SSMicro and SSMicro77 Boards)
 H_MOTOR = 2 (SSCBHC Boards)
 X_MOTOR = 3 (SSXY___, SSXYZ___ and SSWXYZ___ Boards)
 Y_MOTOR = 4 (SSXY___, SSXYZ___ and SSWXYZ___ Boards)
 Z_MOTOR = 5 (SSXYZ___ and SSWXYZ___ Boards)
 Q_ENCODERS = 6 (SSXYQE and SSQE Boards)
 W_MOTOR = 7 (SSWXYZ___ Boards)
 A_AXIS = 254 (All Motor Axis .same as 'G'lobal command.)

 A_ADDRESS = 254 (All Motor Axis .same as 'G'lobal command.)

SHORT *SetCurrentLevel BYTE axis, BYTE address BYTE running, BYTE
idle, BYTE decay) : This method sets the running, idle and decay parameters and
returns an integer that informs the calling routine of the out come of the call. The axis
and address parameters are needed for all boards which follow the same rules as
mentioned above. The other parameters (running, idle and decay) are associated with
different axis and may or may not be applicable which is shown in the list below:

 SSCB, SSXYQE and SSXYZ Boards use just idle and valid idle values are listed
below:

o 0 (Full power idle)
o 1 (1/4 power idle)
o 2 (No power idle)

 SSCB-Gecko :
o 0 (Gecko Amp Enable line is active)
o 1 (Same as 0)
o 2 (Off, Gecko Amp. is disabled)

 SSCBHC :
o Running (1 to 255)
o Idle (0=OFF to 100)

 SSMicro, SSMicro77, SSXYMicro, SSXYMicro77, SSXYZMicro, SSXYZMicro77 and
SSWXYZMicro :

o Running (1 to 255)
o Idle (0=OFF to 100)
o Decay (0 to 255)

Upon completion of the method, it will return an integer which will have one (1) of the
following responses:

 cPROCESS_COMPLETE . Process was completed with no errors.
 cSYNTAX_ERROR . Missing parameter from calling routine.
 cPARAMETER_ERROR . Parameter value out of range.
 cHARDWARE_CURRENT_CNTL . Hardware controlled running parameter with no

decay control. Idle is only variable allowed (0, 1 and 2).
 cGENERAL_ERROR . One of two reasons for this error. The first is that there is

no serial communications or that the axis is not listed as .active..
 cBOARD_TYPE_UNKNOWN . Did not find this board type in the parameter listing

of Simple Step boards. This could mean that the board is custom.

BYTE CheckMotorStatus(BYTE axis, BYTE address) : This method returns the
current status of a Simple Step axis. Valid status returns as a single character are as
follows:

Status Value Description

SYSTEM_READY > System ready, no motor movement in progress

MOTOR_HOMED_NOT_MOVED s Initialize (.N.) command given with no movement parameter (0).

JOG_STATUS j Currently in JOG mode.

SYNTAX_ERROR # Command syntax error.

PARAMETER_OUT_OF_RANGE ! Command parameter out of range.

ABORT_IN_PROGRESS a Motion command aborted or aborting.

MOTOR_BUSY b Motion currently being worked on.

MOTOR_WAIT w RTOS motion stack is full.

MOTOR_DONE f Motor has completed it's movement.

UPDATING_MOTOR_MOVE u Currently updating Continuous Motor movement profile.

DECELERATION_IN_PROCESS < Currently in deceleration mode of motor movement command.

COMMAND_NC_MOTOR_RUNNING % Can not complete command. Motor is in progress.

MOTOR_NOT_HOMED h Initialization command has not been given.

RTOS_SOFT_LIMIT_REACHED l RTOS Software limit has been triggered.

MOTOR_HOMED H Motor is at the Home position and has been triggered before
motor command could be executed.

MOTOR_LIMIT_REACHED L Motor is at the Limit position and has been triggered before motor
command could be executed.

DONE_DELAY_COMMAND d Delay command complete.

HOME_TRAP_ACTIVATED t Home trap command has been tripped.

IAP_ACTIVE ^ IAP program active.

CRC_ERROR + CRC error in IAP program.

RUNNING_IEEPROM r Currently running a IEEPROM program.

FINISHED_IEEPROM c Finished programming IEEPROM memory.

IEEPROM_NOT_ERASED n IEEPROM is not erased.

ENCODER_ERROR e Quadrature Encoder interface error has occurred.

Initialization and Motor Movement Methods

 The fifth group in the Simple Step ActiveX methods is the initialization and
motor movement commands. These methods allow the user to initialize and axis and
to move the motor either to an absolute position or perform a relative move.
MoveMotorAbsolute is usually used in Linear movement operations and
MoveMotorRelative is usually used in Rotary operations.

SHORT MoveMotorAboslute(BYTE axis, BYTE address, LONG
begin_velocity, LONG top_velocity, BYTE slope, LONG position) : This
method allows the user to have an axis at a specific board address to move to an
absolute position (no negative positions commands are allowed). The method will
return with a TRUE = operation successful or a FALSE = operation failed. A failure could
be from any number of reasons as follows:

 Syntax error of any parameter.
 Parameter error of any parameter passed to the MoveMotorAbsolute method.
 Motor position was in the Home (0) direction and motor Home input is already

tripped.
 Motor position was in the Limit direction and the Limit input was already

tripped.
 Communications port is NOT active.

SHORT MoveMotorRelative(BYTE axis, BYTE address, LONG
begin_velocity, LONG top_velocity, BYTE slope, BYTE home_active, BYTE
limit_active, LONG position) : This method allows the user to have an axis at a
specific board address to move to an relative position (negative positions move
towards Home and positive positions move towards Limit). The Home and Limit sensor
is treated differently with the 'R'elative move command. One, both or no sensors can
be used to stop the motor NO MATTER WHAT DIRECTION the motor is moving in. By
setting the home_active and limit_active to TRUE or FALSE will determine if they are
looked for in the move process. The method will return with a TRUE if the operation
was successful or a FALSE if it has failed. A failure could be from any number of the
following reasons:

 Syntax error of any parameter.
 Parameter error of any parameter passed to the MoveMotorAbsolute method.
 Motor position was in the Home (0) direction and motor Home input is already

tripped.
 Motor position was in the Limit direction and the Limit input was already

tripped.
 Communications port is NOT active.

VB: SHORT InitializeMotor(BYTE axis, BYTE address, BYTE direction,
BYTE move, BSTR options) or C++: SHORT InitializeMotorC(BYTE axis,
BYTE address, BYTE direction, BYTE move, CHAR* options) : This method
allows the user to initialize a given axis. This method will also set a flag in the axis
structure to allow other routines to recognize the fact that an axis is ready for motion
commands. The following are allowed parameters for this command including a string
option for other options.

Direction parameter:

 CW_DIRECTION = 0 . Moves motor in CW direction to find the Home Sensor
 CCW_DIRECTION = 1 . Moves motor in CCW direction to find the Home Sensor

Move parameter:

 FIND_HOME_SENSOR = 1 . Tells the method to move the motor till the Home
sensor is found.

 DO_NOT_FIND_HOME_SENSOR = 0. Tells the method do not move the motor,
set home at its current position and response with an 's' status.

Options parameter string:
 The string that is represented in this parameter will automatically be appended
to the motor initialization command ('N'). The only option that will be checked for
correct syntax before being sent to the controller is the "ACTIVE_LOW_SIGNAL" and
"ACTIVE_HIGH_SIGNAL" characters to make sure that there is one for the Home signal
and another for the Limit signal.

Option Name Value Description
MOTOR_MOTION_STATUS c Send back a ‘f’ status when the axis completes a move

(single axis on network or serial motion ONLY).
STRIP_LEADING_ZEROS S Strip off leading zeros of all numeric responses from axis.
INHIBIT_HOME_SIGNAL H Ignore the Home Signal Input on this axis.
INHIBIT_LIMIT_SIGNAL L Ignore the Limit Signal Input on this axis.
SKIP_PREFIX h Skip prefix on all responses back to host.
SKIP_DELIMITER d Skip delimiters on all responses back to host.
SKIP_STATUS a Skip status character on all responses back to host.
ALLOW_SYSTEM_STATUS s Send axis status while motor is running (NON-RTOS axis).
SKIP_ZERO_HOME z Will zero the position counter, but when home is found, do

not zero counter.
ACTIVE_HIGH_SIGNAL 1 Home or Limit input will be an active High (1).
ACTIVE_LOW_SIGNAL 0 Home or Limit input will be an active Low (0).
ACTIVATE_LINEFEEDS l Send back Linefeeds (0x0A) after a 0x0D delimiter is sent.
NO_IEEPROM_STATUS e Do not send back status for commands executed while

running in IEEPROM mode.
COMMAND_RESPONSE r Send back Command response when running in IEEPROM

mode.

Example VB:
Dim options As String
Dim result As Integer

options = STRIP_LEADING_ZEROS + ALLOW_SYSTEM_STATUS
result = InitializeMotor(X_MOTOR, 0, CW_DIRECTION, FIND_HOME_SENSOR, options)

Example C++:

BYTE options[10];
SHORT result;

options[0] = STRIP_LEADING_ZEROS;
options[1] = ALLOW_SYSTEM_STATUS;
options[2] = 0x00;

result = InitializeMotor(X_MOTOR, 0, CW_DIRECTION, FIND_HOME_SENSOR, options);

Motor Movement Parameter Methods (Write)

 The sixth group in the Simple Step ActiveX methods performs motor parameter
settings like changing the E, B and S values, etc.

SHORT SetMotorPosition(BYTE axis, BYTE address, LONG position) : This
method allows the user to set the Motor Position without moving the motor. The
method will return a TRUE (value was set) or FALSE (syntax error, parameter error or
no board at that location).

SHORT SetTopVelocity(BYTE axis, BYTE address, LONG speed) : This
method allows the user to set the top velocity (E value). The method will return a
TRUE (value was set) or FALSE (syntax error, parameter error or no board at that
location).

SHORT SetBeginVelocity(BYTE axis, BYTE address, LONG speed) : This
method allows the user to set the begin velocity (B value). The method will return a
TRUE (value was set) or FALSE (syntax error, parameter error or no board at that
location).

SHORT SetSlope(BYTE axis, BYTE address, BYTE slope) : This method allows
the user to set the slope (S value). The method will return a TRUE (value was set) or
FALSE (syntax error, parameter error or no board at that location).

SHORT SetPrescale(BYTE axis, BYTE address, BYTE prescale) : This method
allows the user to set the prescale (r value). The method will return a TRUE (value
was set) or FALSE (syntax error, parameter error or no board at that location).

SHORT SetSteppingMode(BYTE axis, BYTE address, BYTE mode) : This
method allows the user to set the stepping mode (F, H or Hx value). The method will
return a TRUE (value was set) or FALSE (syntax error, parameter error or no board at
that location). Supported stepping mode types are as follows:

 FULL_STEP = 0 All Motion Controllers except the SSCB-Gecko
 HALF_STEP = 1 All Motion Controllers except the SSCB-Gecko
 QUARTER_STEP = 2 SSCBHC, Micro and Micro77 units
 EIGTH_STEP = 3 SSCBHC, Micro and Micro77 units
 SIXTEETH_STEP = 4 SSCBHC and Micro units

Upon completion of the method, it will return an integer which will have one (1) of the
following responses:

 cPROCESS_COMPLETE - Process was completed with no errors.
 cSYNTAX_ERROR - Missing parameter from calling routine.

 cPARAMETER_ERROR - Parameter value out of range.
 cHARDWARE_CURRENT_CNTL - Hardware controlled running parameter with no

decay control. Idle is only variable allowed (0, 1 and 2).
 cGENERAL_ERROR - One of two reasons for this error. The first is that there is

no serial communications or that the axis is not listed as "active".
 cBOARD_TYPE_UNKNOWN - Did not find this board type in the parameter listing

of Simple Step boards. This could mean that the board is custom.

Motor Movement Parameter Methods (Read)

 The seventh group in the Simple Step ActiveX methods performs reading of the
motor parameters like changing the E, B and S values, etc.

LONG ReadTopVelocity(BYTE axis, BYTE address) : This method allows the
user to read the current top velocity (e value) from the selected axis. The method will
return the top velocity value. If the routine is not successful it will return a 0. Failure of
this routine could be from not having an axis at the requested location or the
communications port is not currently open.

LONG ReadBeginVelocity(BYTE axis, BYTE address) : This method allows the
user to read the current begin velocity (b value) from the selected axis. The method
will return the begin velocity value. If the routine is not successful it will return a 0.
Failure of this routine could be from not having an axis at the requested location or the
communications port is not currently open.

BYTE ReadSlope(BYTE axis, BYTE address) : This method allows the user to
read the current slope (s value) from the selected axis. The method will return the
slope value. If the routine is not successful it will return a 0. Failure of this routine
could be from not having an axis at the requested location or the communications port
is not currently open.

LONG ReadMotorPosition(BYTE axis, BYTE address) This method allows the
user to read the current motor position (m value) from the selected axis. The method
will return the motor position value. If the routine is not successful it will return a 0.
Failure of this routine could be from not having an axis at the requested location or the
communications port is not currently open.

IEEPROM Methods

 The eighth group in the Simple Step ActiveX methods performs IEEPROM
Reading, Writing and Erasing. The ieeprom_data variable will be scanned before
programming to the IEEPROM of the axis in question. The user can insert 0x0D
(carriage returns/enters) for line control by adding a .\r. marker. The method will scan
for these markers and replace them with 0x0D (CR) characters.

VB: BSTR IEEPROM_Read(BYTE axis, BYTE address, SHORT
ieeprom_address) or C++: void IEEPROM_ReadC(BYTE axis, BYTE
address, SHORT address, CHAR* ieeprom_data): This method allows the user
to read the motor axis IEEPROM (all XA processor now come with a minimum of 400
character IEEPROM even if you did not purchase the IEEPROM version). The method will
return a null terminated string with 0x0D (CR) delimiters for each line.

SHORT IEEPROM_Erase(BYTE axis, BYTE address) : This method erases the
axis IEEPROM contents. It will return either a TRUE for operation complete or a FALSE
for operation failed. The only time an operation can fail is if the serial communication is
lost.

VB: SHORT IEEPROM_Write(BYTE axis, BYTE address, BSTR
ieeprom_data, SHORT ieeprom_address) or C++: SHORT
IEEPROM_WriteC(BYTE axis, BYTE address, CHAR* ieeprom_data, SHORT
ieeprom_address) : This method allows the user to program an IEEPROM program or
message to that particular axis. The contents of the IEEPROM will be erased
completely before the programming is performed. All contents inside the IEEPROM
memory will be lost. The method will then program the contents of the IEEPROM. Upon
completion, the method will return ether a TRUE for operation complete or a FALSE for
operation failed. The only time a FALSE will be returned is when the PC loses serial
communications of the board.

Note:

Example:
 Via a Terminal Program:
 00001: K4<Enter>
 00004: c0<Enter>

 Via the method:
 IEEPROM_Write(X_MOTOR, 0, "K4\rc0\r", 1)

Filename: Simple Step ActiveX Manual.doc
Directory: \\SIMPLESTPSERVER\Simple Step LLC\Documents\Simple Step

ActiveX Manual
Template: C:\Users\User\AppData\Roaming\Microsoft\Templates\Normal.dot
Title: Simple Step® ActiveX Manual
Subject:
Author: Charles R. Grenz
Keywords:
Comments:
Creation Date: 12/17/2010 6:48 AM
Change Number: 25
Last Saved On: 12/19/2010 7:37 PM
Last Saved By: Charles R. Grenz
Total Editing Time: 212 Minutes
Last Printed On: 12/19/2010 7:38 PM
As of Last Complete Printing
 Number of Pages: 23
 Number of Words: 6,718 (approx.)
 Number of Characters: 35,474 (approx.)

	Simple Step ActiveX Installation Notes
	Microsoft Visual Basic version 6.0:
	Microsoft C++.NET 2003:
	Borland C++ Builder 6.0:
	National Instruments LabVIEW 6.0:

	Simple Step ActiveX Methods and Properties
	Properties
	Windows Initialization and Release of the Serial Port Control
	Serial Port Methods
	Board Information and Networking Methods
	Initialization and Motor Movement Methods
	Motor Movement Parameter Methods (Write)
	Motor Movement Parameter Methods (Read)
	IEEPROM Methods

